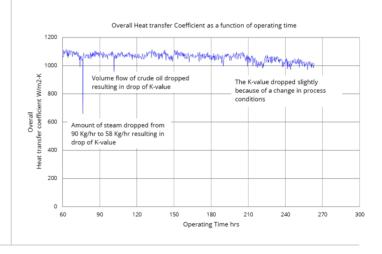


TEST UNIT CRUDE OIL PRE-HEATER

Introduction

At the premises of an oil and gas company a test has been carried out to prove the performance of the selfcleaning fluidized bed heat exchanger for zerofoulingoperation.


As a reference, the conventional heat exchanger used at the client for the same process conditions required cleaning every month.

Process Conditions

The tests were done at the following process conditions:

Process Conditions	Tubes Side		Shell Side
Medium	Crude		Well water
Pressure	6 barg		4.1 barg
Temperature (°C)	In	Out	Max
	30	70	153
Flow (m³/h)	5 m³/hr		150 m³/hr

Test Unit

The test unit comprised a shell and tube heat exchanger with a single tube having external recirculation of the particles through a down-comer. In the down-comer the particles were separated from the crude and transported back to the inlet of the tube. The heat exchanger tube had an internal diameter of 54 mm and a length of 7.7 m. The particles used were from stainless steel cut wire with a size of 1.5 mm.

Results

- In the test period the unit proved easy operation.
- The test unit remained clean for a total period of 750 hours. In the graph the heat transfer coefficient is shown for the first 250 hours.
- Beyond 210 hours of operation, a small change in process conditions affected the heat transfer coefficient slightly.

